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Mean Time to Failure (MTTF)  

MTTF is a basic measure of reliability for non-repairable 
systems. It is the mean time expected until the first failure of a 
piece of equipment. MTTF is a statistical value and is intended 
to be the mean over a long period of time and with a large 
number of units. For constant failure rate systems, MTTF is 
the inverse of the failure rate .The general expression for 
MTTF is given by (2). 

 
                                                                             (2) 
 

When the failure rate is constant with time, the times to failure 
are exponentially distributed. This leads to ( )t . 

          . 
                                                                             (3)      
 

Mean Time between Failures (MTBF)  

MTBF is a basic measure of reliability for repairable items. 
MTBF can be described as the time passed before a 
component, assembly, or system fails, under the condition of a 
constant failure rate. Another way of stating MTBF is the 
expected value of time between two consecutive failures, for 
repairable systems [4]. It is a commonly used variable in 
reliability and maintainability analyses. MTBF can be 
calculated as the inverse of the failure rate,   for constant 
failure rate systems. For example, for a component with a 
failure rate of 2 in (failures per million hours), the MTBF 
would be the inverse of that failure rate,  .The general 
expression for MTBF is given by (4). 

 
                                                                             (4) 
 

Mean Time to Recovery (MTTR) 

MTTR is a factor expressing the mean active corrective 
maintenance time required to restore an item to an expected 
performance level. This includes for example, troubleshooting, 
dismantling, replacement, restoration, functional testing, but 
shall not include waiting times for resources. 

3. MILITARY HANDBOOK (MIL-HDBK-217F) 

Introduction and Applicability 

Military Handbook 217F was developed in 1962 by the U.S. 
Department of Defense. The last edition of this handbook has 
been released in 1995.The purpose of this handbook is to 
establish and maintain consistent and uniform methods for 
estimating inherent reliability of military electronic 
equipments and systems. It also establishes a common basis 
for comparing and evaluating reliability predictions of related 

or competitive designs. The handbook is intended to be used 
as a tool to increase the reliability of the equipment being 
designed. There are two different methods   for the calculation 
of reliability explained in detailed below. 

Parts Count Method 

Parts Count method is the failure rate prediction method  at 
reference conditions. The failure rate for equipment under 
reference conditions is given by (5). 

 
                                                                                           (5) 
 
Where, 

ref  is the failure rate under reference conditions; n is 

the number of components. 

The reference conditions adopted are typical for the majority 
of applications of components in the equipment. Reference 
conditions include statements about operating phase, failure 
criterion, operation mode (e.g. Continuous, intermittent), 
climatic and mechanical stresses, and electrical stresses. 

Part Stress Method 

Parts stress method is the Failure rate prediction at operating 
conditions. Components in equipment may not always operate 
under the reference conditions. In such cases, the real 
operational conditions will result in failure rates different from 
those given for reference conditions.  

Therefore, models for stress factors, by which failure rates 
under reference conditions can be converted to values 
applying for operating conditions (actual ambient temperature 
and actual electrical stress on the components), and vice versa, 
may be required. The failure rate for equipment under 
operating conditions is calculated as follows given by (6). 

                                                                         
                                                                                           (6)                        
 

4. SOLAR POWER UNIT 

Components of SPU 

Solar power unit (SPU) mainly consists of three components: 
(1) solar panel, (2) Power converter and (3) Sensing 
component. The PV panel is a series parallel interconnection 
of PV cells and is the main power source. The power 
converter sets the maximum power point of the panel as 
desired by the controller that uses maximum power point 
tracking (MPPT) [5]. PV panel current and voltage sensing is 
achieved with simple sensing resistors or other devices, such 
as hall-effect current sensors. The SPU uses a dc-dc converter 
per panel, also called a micro-converter, with a dc output. 
Recent technologies show a push towards micro-inverters that 
are mounted on the PV panel and provide an ac output rather 
than dc. 
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Fig. 2: Solar power unit 

Faults in PV Panel 

There are several faults in the panel, though PV panels are 
assumed significantly more reliable. PV panel reliability 
reduces significantly due to the occurrence of following types 
of faults. PV reliability depends heavily on PV material and 
temperature, humidity and radiation of the environment. Mono 
crystalline, crystalline and poly crystalline silicon PV panels 
which makes up over 90 % of the market degrade at a 
reasonably small rate. Amorphous silicon and copper indium 
de-selenide (CIS) PV panels show significantly higher 
degradation rates. Generally shading effect in PV panel 
degrades its performance [6]. Common faults are shown in 
Table 1. [7],[8],[9]  

Localized heating within a PV panel called a hot spot is 
another fault that reduces reliability. When a cell in a standard 
panel configuration becomes negatively biased and dissipates 
power as heat rather than producing electrical power, Hot spot 
heating occurs. This occurs when the current produced by the 
cell is lower than the string current which results partial 
shading, cell damage, connection failure or uneven 
degradation. To limit the reverse biased voltage across the PV 
panel and limit hot spot heating bypass diodes are often used 
[10].  

A component based approach can also be used to estimate the 
PV panel reliability. A closest component to a cell [11] is a 
photo-diode. A solar panel can be modeled as a series parallel 
combination of photo-diodes where the equivalent failure rate 
is that of a 6 x 12 matrix of photo-diodes. 

Table 1: Faults in PV panel and its electrical impact 

Fault Electrical effect 
Interconnect, contact insulation 
failure  

Arcing or open circuit  

Corrosion of Wire, terminals, and 
cell metal (including hail impact, 
moisture, and de-lamination)  

Open circuit if severe, or 
reduced PPV  

Severely cracked, fractured, 
mismatched cell  

Cell back-biasing (reduced 
ISC) and/or overheating  
(Reduced VOC)  

UV weathering  Material degradation 
(reduced  PPV)  

Optical surface soiling  Temporary reduction of 
PPV  and ISC  

Other faults and physical effects on failure rates                                      

With one converter, control and sensing per PV panel, SPUs 
can be aggregated in series parallel combinations to form 
larger arrays. Most of these faults are outlined in [12]. These 
faults occur in semiconductors, electrolytic capacitors and 
other components as summarized in table 2. 

Table 2: Faults occur in components used in SPU 

Components Faults 
MOSFET(S) Open circuit (OC) 

Short circuit (SC) 
  Diode (D)                               OC 

                               SC 
  Capacitor (C) Degradation: C drops by 25% 

OC 
SC 

Inductor (L) Multiple-winding short: L drops by 90% 
  PV panel VOC drop by 50% 

ISC drop by 50% 
VOC and ISC drop by 25% 

Connector OC 
Physical faults Connector OC, VOC and ISC drop 

Failure Rates 

Failure rates vary with varying operating conditions and 
ratings. Table 3 summarizes the failure rates denoted by 
with appropriate subscript for each component and the 
subscript b denoting the component base failure rate. The 
values of affecting factors are denoted by with appropriate 
subscript [13][14]. 

Table 3: Failure rate model for different components 

Components Failure Rate Model
Capacitor (C) λC = λC,b πT πC πS πSR πQ πE  
Inductor (L) λL = λL,b πT πQ πE  
MOSFET (S) λS = λS,b πT πA πQ πE  
Diode (D) λD = λD,b πT πCC πS πQ πE  
Rsense λR = λR,b πT πP πS πQ πE  
Connector λCN = λCN,b πT πK πQ πE  
One PV cell λP = λP,b πT πQ πE  

5. SPU’S RELIABILITY MODEL 

Table 4 provides base failure rate for selected type of 
components used in SPU. These base failure rates vary 
according to the type of component and other π- factors vary 
according to operating conditions, ambient and junction 
temperature as shown in Table 5. 

Table 4: Base failure rate for components of SPU 

    Components Value (Failure/hour x 10-6)
Capacitor (C) λC,b=0.00012 
Inductor (L) λL,b=0.00003 

MOSFET (S) λS,b=0.012 
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Diode (D) λD,b=0.025 
Rsense λR λR,b=0.0037 

Rsense (voltage) λR,b=0.0017 
Connector λCN,b=0.007 

One PV cell λP,b=0.04 
 

Table 5: Different application factors for failure rate 

Factor Value 
πT  Ambient 

temperature = 20°C,            
junction 

temperature = 40°C 

C, 0.79   L, 0.93   S, 1.4   D, 1.6 
Rsense(current), 0.95 
Rsense (voltage), 0.88 

Connector, 1.3   PV cell, 1.6 
πE Benign environment 1  

πQ, Quality C, L, Rsense (current),        
Rsense(voltage), 3 
S, D, PV cell, 5.5               

Connector, 2 
πS, Stresses 

(voltage or power) 
C, 1.4    D, 0.19 

Rsense(current), 0.79         
Rsense(voltage), 0.66 

πC, Capacitance  3.4 
πSR, Series resistance  3.3 
πA, Application, 250Wmax  8 
πCC,  Contact construction  1 
πK, Mating factor  1 
πP, Power rating  0.4 

6. RELIABILITY CURVE OF SPU 

Figure 3 shows the reliability curve of SPU model as designed 
above. The failure rates are calculated by using Military 
Handbook 217F. The failure rates vary according to variation 
in the operating environment. There are different types of 
environments considered in Handbook given by Table VI [12].  

 

Fig. 3: Reliability Curve 

 

Calculated Failure Rates: 
lambda_d  =  0.0418 
lambda_S  =  0.7392 
lambda_C  =  0.0045 
lambda_L  =  8.3700e-005 
lambda_P  =  2.1120 
MTBF =  3.4246e+005 
 

Table 6: Different Types of Operating Environments 

Environment  Symbol Environment Symbol 

Ground benign GB Ground fixed GF 

Airborne 
uninhabited 
(cargo) 

AUC Airborne 
uninhabited 
(fighter) 

AUF 

Ground mobile GM Missile launch ML 

Naval sheltered NS Space flight SF 

Naval 
unsheltered 

NU Missile flight MF 

Airborne  
inhabited 
(cargo) 

AIC Airborne rotary 
winged 

ARW 

Airborne 
inhabited 
(fighter) 

AIF Cannon launch CL 

 

 
Fig. 4: MTBF for different environments 

7. CONCLUSION 

This paper shows the calculation of overall Reliability of solar 
power unit. It is clear that the PV panel reliability is an 
important factor of the system. The MTBF variation with 
different operating environments is significant and is shown in 
Fig. 4. Benign, ground and air borne environments maintain a 
reasonable MTBF while harsher operating environments 
greatly reduces the reliability. 
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